SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

On the C^1-property of the percolation function of random interlacements and a related variational problem

  • Alain-Sol Sznitman

10/10/19 Published in : arXiv:1910.04737

We consider random interlacements on \mathbb{Z}^d, d \ge 3. We show that the percolation function that to each u \ge 0 attaches the probability that the origin does not belong to an infinite cluster of the vacant set at level u, is C^1 on an interval [0,û), where û is positive and plausibly coincides with the critical level u_∗ for the percolation of the vacant set. We apply this finding to a constrained minimization problem that conjecturally expresses the exponential rate of decay of the probability that a large box contains an excessive proportion ν of sites that do not belong to an infinite cluster of the vacant set. When u is smaller than û, we describe a regime of "small excess" for ν where all minimizers of the constrained minimization problem remain strictly below the natural threshold value \sqrt{u}_* - \sqrt{u} for the variational problem.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Strong stability for the Wulff inequality with a crystalline norm

Emergent Strings from Infinite Distance Limits

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved