SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Dense Phenomena for Ergodic Schrödinger Operators: I. Spectrum, Integrated Density of States, and Lyapunov Exponent

Artur Avila, David Damanik

17/6/25 Published in : arXiv:2506.14259

We consider Schrödinger operators in $\ell^2(\Z)$ whose potentials are defined via continuous sampling along the orbits of a homeomorphism on a compact metric space. We show that for each non-atomic ergodic measure \mu, there is a dense set of sampling functions such that the associated almost sure spectrum has finitely many gaps, the integrated density of states is smooth, and the Lyapunov exponent is smooth and positive. As a byproduct we answer a question of Walters about the existence of non-uniform $\SL(2,\R)$ cocycles in the affirmative.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Phase III direction(s)

  • Differential equations of Mathematical Physics

The tetrahedral Horn problem and asymptotics of U(n) 6j symbols

Modular systoles are extremal for the crossing number

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved