SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Exponential decay in the loop O(n) model: n>1, x

Alexander Glazman, Ioan Manolescu

26/10/18 Published in : arXiv:1810.11302

We show that the loop O(n) model exhibits exponential decay of loop sizes whenever n\geq 1 and x<\tfrac{1}{\sqrt{3}}+\varepsilon(n), for some suitable choice of \varepsilon(n)>0.
It is expected that, for n \leq 2, the model exhibits a phase transition in terms of x, that separates regimes of polynomial and exponential decay of loop sizes. In this paradigm, our result implies that the phase transition for n \in (1,2] occurs at some critical parameter x_c(n) strictly greater than that x_c(1) = 1/\sqrt3. The value of the latter is known since the loop O(1) model on the hexagonal lattice represents the contours of spin-clusters of the Ising model on the triangular lattice.
The proof is based on developing n as 1+(n−1) and exploiting the fact that, when x<\tfrac{1}{\sqrt{3}}, the Ising model exhibits exponential decay on any (possibly non simply-connected) domain. The latter follows from the positive association of the FK-Ising representation.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

General Properties of Multiscalar RG Flows in d=4-\varepsilon

On disjointness properties of some parabolic flows

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved