SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Limiting distributions of the Spherical model and Spin O(N) model: Appearance of GFF

Juhan Aru, Aleksandra Korzhenkova

7/5/24 Published in : arXiv:2405.04501

We revisit the relation between the spherical model of Berlin-Kac and the spin O(N) model in the limit N→∞ and explain how they are related via the discrete Gaussian free field (GFF). More precisely, using probabilistic limit theorems and concentration of measure we first prove that the infinite volume limit of the spherical model on a d-dimensional torus is a massive GFF in the high-temperature regime, a standard GFF at the critical temperature, and a standard GFF plus a Rademacher random constant in the low-temperature regime. The proof in the case of the critical temperature appears to be new and requires a fine understanding of the zero-average Green's function on the torus. For the spin O(N) model, we study the model in the double limit of the spin-dimensionality and the torus size. We take the limit as first the spin-dimension N goes to infinity, and then the size of the torus, and obtain that the different spin coordinates become i.i.d. fields, whose distribution in the high-temperature regime is a massive GFF, a standard GFF at the critical temperature, and a standard GFF plus a Gaussian random constant in the low-temperature regime. In particular, this means that although the limiting free energies per site of the two models agree at all temperatures, their actual finite-dimensional laws still differ in terms of their zero modes in the low-temperature regime.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Phase III direction(s)

  • Statistical Mechanics and Random Structures
  • Spectral gap problems in non-perturbative quantum theory

Accurate standard siren cosmology with joint gravitational-wave and γ-ray burst observations

Active self-disassembly enhances the yield of self-assembled structures

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved