SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Maze Topiary in Supergravity

Iosif Bena, Anthony Houppe, Dimitrios Toulikas, Nicholas P. Warner

4/12/23 Published in : arXiv:2312.02286

We show that the supergravity solutions for 1/4-BPS intersecting systems of M2 and M5 branes are completely characterized by a single "maze" function that satisfies a non-linear "maze" equation similar to the Monge-Ampère equation. We also show that the near-brane limit of certain intersections are AdS_3 \times S^3 \times S^3 solutions warped over a Riemann surface, \Sigma. There is an extensive literature on these subjects and we construct mappings between various approaches and use brane probes to elucidate the relationships between the M2-M5 and AdS systems. We also use dualities to map our results onto other systems of intersecting branes. This work is motivated by the recent realization that adding momentum to M2-M5 intersections gives a supermaze that can reproduce the black-hole entropy without ever developing an event horizon. We take a step in this direction by adding a certain type of momentum charges that blackens the M2-M5 intersecting branes. The near-brane limit of these solutions is a BTZ^{extremal} \times S^3 \times S^3 \times \Sigma geometry in which the BTZ momentum is a function of the Riemann surface coordinates.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Motivic coaction and single-valued map of polylogarithms from zeta generators

Symplectic induction, prequantum induction, and prequantum multiplicities

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved