SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Symplectic induction, prequantum induction, and prequantum multiplicities

Tudor S. Ratiu, François Ziegler

1/12/23 Published in : Comm. Cont. Math., Vol. 24, No. 04, 2150057 (2022)

Frobenius reciprocity asserts that induction from a subgroup and restriction to it are adjoint functors in categories of unitary G-modules. In the 1980s, Guillemin and Sternberg established a parallel property of Hamiltonian G-spaces, which (as we show) unfortunately fails to mirror the situation where more than one G-module “quantizes” a given Hamiltonian G-space. This paper offers evidence that the situation is remedied by working in the category of prequantumG-spaces, where this ambiguity disappears; there, we define induction and multiplicity spaces and establish Frobenius reciprocity as well as the “induction in stages” property.

Entire article ArXiv

Phase I & II research project(s)

  • Quantum Systems
  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Maze Topiary in Supergravity

Convexity of Singular Affine Structures and Toric-Focus Integrable Hamiltonian Systems

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved