SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

The mean-field limit of quantum Bose gases at positive temperature

Jürg Fröhlich, Antti Knowles, Benjamin Schlein, Vedran Sohinger

6/1/20 Published in : arXiv:2001.01546

We prove that the grand canonical Gibbs state of an interacting quantum Bose gas converges to the Gibbs measure of a nonlinear Schrödinger equation in the mean-field limit, where the density of the gas becomes large and the interaction strength is proportional to the inverse density. Our results hold in dimensions d \leq 3. For d>1 the Gibbs measure is supported on distributions of negative regularity and we have to renormalize the interaction. More precisely, we prove the convergence of the relative partition function and of the reduced density matrices in the L^r-norm with optimal exponent r. Moreover, we prove the convergence in the L^\infty-norm of Wick-ordered reduced density matrices, which allows us to control correlations of Wick-ordered particle densities as well as the asymptotic distribution of the particle number. Our proof is based on a functional integral representation of the grand canonical Gibbs state, in which convergence to the mean-field limit follows formally from an infinite-dimensional stationary phase argument for ill-defined non-Gaussian measures. We make this argument rigorous by introducing a white-noise-type auxiliary field, through which the functional integral is expressed in terms of propagators of heat equations driven by time-dependent periodic random potentials and can, in turn, be expressed as a gas of interacting Brownian loops and paths. When the gas is confined by an external trapping potential, we control the decay of the reduced density matrices using excursion probabilities of Brownian bridges.

Entire article

Phase I & II research project(s)

  • Quantum Systems
  • Field Theory
  • Statistical Mechanics
  • Geometry, Topology and Physics

Mathematical languages shape our understanding of time in physics

Area in real K3-surfaces

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved