SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Regularity of interfaces in phase transitions via obstacle problems

Alessio Figalli

9/9/18 Published in : arXiv:1809.02932

The aim of this note is to review some recent developments on the regularity theory for the stationary and parabolic obstacle problems. After a general overview, we present some recent results on the structure of singular free boundary points. Then, we show some selected applications to the generic smoothness of the free boundary in the stationary obstacle problem (Schaeffer's conjecture), and to the smoothness of the free boundary in the one-phase Stefan problem for almost every time.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime

The threshold effects in one-dimensional strongly-interacting systems out of equilibrium

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved