SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

The detection of relativistic corrections in cosmological N-body simulations

Jean-Pierre Eckmann, Farbod Hassani

10/9/19 Published in : Celest Mech Dyn Astr 132, 2 (2020)

We study the sensitivity of the computed orbits for the Kepler problem, both for continuous space, and discretizations of space. While it is known that energy can be very well preserved with symplectic methods, the semi-major-axis is in general not preserved. We study this spurious shift, as a function of the integration method used, and also as a function of an additional interpolation of forces on a 2-dimensional lattice. This is done for several choices of eccentricities, and semi-major axes. Using these results, we can predict which precisions and lattice constants allow for a detection of the relativistic perihelion advance. Such bounds are important for calculations in N-body simulations, if one wants to meaningfully add these relativistic effects.

Entire article ArXiv

Phase I & II research project(s)

  • Quantum Systems
  • Field Theory
  • Statistical Mechanics

Symmetric Khovanov--Rozansky link homologies

Equilibria of plane convex bodies

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved