SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Topologically Robust Quantum Network Nonlocality

Sadra Boreiri, Tamas Krivachy, Pavel Sekatski, Antoine Girardin, Nicolas Brunner

13/6/24 Published in : arXiv:2406.09510

We discuss quantum network Bell nonlocality in a setting where the network structure is not fully known. More concretely, an honest user may trust their local network topology, but not the structure of the rest of the network, involving distant (and potentially dishonest) parties. We demonstrate that quantum network nonlocality can still be demonstrated in such a setting, hence exhibiting topological robustness. Specifically, we present quantum distributions obtained from a simple network that cannot be reproduced by classical models, even when the latter are based on more powerful networks. In particular, we show that in a large ring network, the knowledge of only a small part of the network structure (involving only 2 or 3 neighbouring parties) is enough to guarantee nonlocality over the entire network. This shows that quantum network nonlocality can be extremely robust to changes in the network topology. Moreover, we demonstrate that applications of quantum nonlocality, such as the black-box certification of randomness and entanglement, are also possible in such a setting.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

Scattering problem for Vlasov-type equations on the d-dimensional torus with Gevrey data

Pairing Powers of Pythagorean Pairs

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved