SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Proteins: the physics of amorphous evolving matter

Jean-Pierre Eckmann, Jacques Rougemont, Tsvi Tlusty

31/7/19 Published in : Rev. Mod. Phys. 91, 031001

Proteins are a matter of dual nature. As a physical object, a protein molecule is a folded chain of amino acids with multifarious biochemistry. But it is also an instantiation along an evolutionary trajectory determined by the function performed by the protein within a hierarchy of interwoven interaction networks of the cell, the organism and the population. A physical theory of proteins therefore needs to unify both aspects, the biophysical and the evolutionary. Specifically, it should provide a model of how the DNA gene is mapped into the functional phenotype of the protein.
We review several physical approaches to the protein problem, focusing on a mechanical framework which treats proteins as evolvable condensed matter: Mutations introduce localized perturbations in the gene, which are translated to localized perturbations in the protein matter. A natural tool to examine how mutations shape the phenotype are Green's functions. They map the evolutionary linkage among mutations in the gene (termed epistasis) to cooperative physical interactions among the amino acids in the protein. We discuss how the mechanistic view can be applied to examine basic questions of protein evolution and design. 

Entire article ArXiv

Phase I & II research project(s)

  • String Theory
  • Quantum Systems
  • Statistical Mechanics

Non-linear contributions to angular power spectra

Invariants of long knots

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved